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Abstract 

This paper describes the design, implementation and 
performance of a port of the Argonne National Labora- 
torylMississippi State University MPICH implementation of 
the Message Passing Interface standard to the Cray T3D 
massively parallel processing system. A description of the 
factors influencing the design and the various stages of im- 
plementation are presented. Performance results revealing 
superior bandwidth and comparable latency as compared 
to otherfull message passing systems on the T3D are shown. 
Further planned improvements and optimizations, includ- 
ing an analysis of a port to the T3E, are mentioned. 

1. Introduction 

As part of the MPICH project between Argonne National 
Laboratories and Mississippi State University, a port of the 
MPICH implementation of MPI to the T3D was designed 
and implemented. This was not a rote exercise, but rather an 
in-depth effort that stressed the internal abstract device in- 
terface design of MPICH, demonstrated high performance, 
while revealing several interesting issues concerning MPI 
on systems that have distributed shared memory primitives 
at a low level. While there were a number of bugs in 
this implementation early on (including some incidental to 
MPICH), the experiences associated with removing these 
bugs and retaining high performance are illuminating. Fur- 
thermore, the first-principles MPICH device created for this 
port stands apart from others written using the channel inter- 
face or P4, and so is an important contribution to the overall 
device set of MPICH. Finally, issues concerning misalign- 
ment and datatype-dependent performance have been iden- 
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t3ed and should be factored into emerging MPI test suites. 
The highest bandwidth of full message-passing systems 

on the T3D has been achieved, with just a little help from 
Cray, outstripping the PVM and EPCC MPI implementa- 
tions. However, it is clear that vendor support would have 
been helpful, inasmuch as the other message passing sys- 
tems, which have vendor sanction, have also had access to 
support for removing the subtle bugs that arise in pushing 
the envelope of performance and functionality in the T3D 
runtime environment. Higher bandwidth has been achieved 
on collective operations, though they are far from optimal. 

1.1. MPICH 

MPICH is a portable implementation of the Message 
Passing Interface (MPI)  [31 standard developed jointly by 
Argonne National Laboratory and Mississippi State Univer- 
sity. MPICH contains an abstract device interface (ADI) 
upon which a high-level message passing application pro- 
grammer interface such as MPI can be implemented. The 
AD1 performs four main functions [91: 

Sending and receiving 

Data transfer 

Queueing 

0 Device-dependent functions. 

Porting MPICH to an architecture such as the T3D in- 
volves the creation of new “device” that interacts with the 
AD1 through a set of routines (see [SI for details) and han- 
dles. These handles are used to cache device specific data 
to pass information between the device independent and de- 
vice dependent layers of MPICH. 
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1.2. The Cray T3D 

The Cray T3D is a massively parallel system which um- 
tains up to 2048 processors connected b y  a high-speed, 3.-D 
torus communication network [6]. Cray T3D has a physi- 
cally distributed shared memory, where each processing el- 
ement (PE) has local memory which is gllobally addressable. 
The T3D model is one process per PE and any PE can di- 
rectly address any word of memory on any other PE. Cathe 
consistency is the resonsibility of the us~er. 

2. Design Decisions 

The initial design decision was to choose the most ef- 
ficient method of communication between processing de- 
ments. Cray's Block Transfer Engine (BLT) was an original 
consideration, but this method had some major drawbacks. 
Using the BLT requires the overhead of making an expen- 
sive system call. The asynchronous capability of the BLT 
was appealing, but because of limited memory bandwidlth, 
BLT was taken out of consideriition. Each processing ele- 
ment shares a ELT engine with ;mother processing element. 
When the ELT is in use by one PE, the second PE will b lcd  
if it tries to access the BLT. The BLT also requires a flush 
of the entire cache upon transfer. 

Cray also offers a direct shared memory access library 
(SHMEM) 171 for remote memory transfers. This li- 
brary contains a plethora of functions foir point-to-point auld 
collective communication, synchronization, and cache ma- 
nipulation. The two basic operations in this library ,are 
shmem_get(), which copies data from a remote PE to the lo- 
cal PE, and shmemput0, which copies data from the local 
PE to the remote PE. Multiples of 32- md 64-bit transfers 
are supported, with aligned data. 

After investigating both methods, and on the inforrnal 
advice of Cray Research [ll], the shared memory library 
was chosen as the means of connmunica tion upon which to 
build the MPICH T3D device. Further inivestigation into the 
shared memory library revealed that shmemput() transfers 
data at nearly twice the bandwildth of shmem-get(). There- 
fore, shmemput() was chosen as the basis for the imple- 
mentation of the device. 

In order to use shmem_put() bo transfer data, a remote ad- 
dress on the receiver must be known U priori. Therefore, ihe 
next step in the design process was determining a method 
by which a sender could obtain a target address to which 
a message could be sent. This method must also maintain 
pairwise ordering for messages (within a communicator)i in 
order to be MPI compliant [31. 

Several possibilities were considered, based on ihe 
available shared memory constructs arid functions in ihe 
SHMEM library. The shmemswup() fitnction provides an 
atomic swap operation, and wiis originally considered as 

a means to gain atomic alccess to a pre-allocated message 
buffer at the receiver. However, the latency cost associated 
with such ,an operation was thought to be too high. 

Global and static varialbles and dynamic memory allo- 
cated with the 2rhemallocO function are guaranteed to have 
the same addreis on every PE. It was decided that a message 
buffer ccruld just be an offset into a array of message buffers 
allocated from the shared heap. In fact, remote memory 
writes to global or shared locations is the method encour- 
aged by SIRMEM documentation [5, 71. In order to main- 
tain pairwise ordering of messages, a sender was to have 
only one: buffer into which messages would be written at 
the receiver, and at any time there could only be one out- 
standing message between a sender and a receiver. 

Once the lour level communication design was complete, 
a design for eflicient impliementation of MPI communica- 
tions was cleveloped. A two-level protocol for sending mes- 
sages was decided upon: a protocol for short messages in 
which header information for each message would accom- 
pany the body of the message, and a protocol for longer 
messages in which the bodly could be delivered directly into 
the user buffer at the receiver. These protocols would al- 
low for ithe smaller messages to be sent quickly and also 
allow for a limited global buffer space necessary for put- 
based commumcation. Art additional protocol layer would 
be to added to handle synchronous communications. 

3. Implleimenitation 

None of the: then-existing devices in the MPICH im- 
plementation usied a put-based shared memory strategy for 
communications. Therefore, a completely new device was 
created for the Cray T3D, rather than building upon or aug- 
menting a11 existing device. MPICH's AD1 provided the 
required fimctions for message queueing, so the new de- 
vice was respoinsible for sending and receiving messages, 
transfer of data to the API., and a few other device specific 
functions. 

3.1. Sending and Receiving Messages 

For the MPICH implementation, each process in the ap- 
plication allocates an a r m y  from the shared heap that con- 
tains a slot into which every other process (including itself) 
can send miessajyes (receive buffers) and an array of flags for 
each of its buffers on every other process (send flags) (Fig- 
ure 1). Allocating from the shared heap insures that both 
of these ,data structures reside at the same address on every 
process. The send flags indicate to the sender the state of its 
receive twffer at the receiver, and is a method of flow con- 
trol so that successive messages to the same receiver are not 
overwiritibi and remain pairwise ordered. 
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PIvcess 0 a message header and the user data are sent. The message messages from 0 messages from 1 

0 context id of the communicator being used Send Flags 

Process 1 messages from 0 messages from 1 0 mode value identifying the type of message (short reg- 

Figure 1. Receive Buffers and Send Flags. 

Process 0 

Before any message can be sent, the sender must wait 
for the send flag associated with the receive buffer on the 
receiving PE to be clear. This busy waiting involves travers- 
ing its own receive buffers looking for incoming messages 
to process so that communications may progress. As soon 
as the send flag is clear, the sender sets the send flag and the 
outgoing message is written to the receiver at the sender's 
message slot. A new message at the receiver is signaled by 
a status flag contained in each receive buffer. This status 
flag is set when the sender writes a message header into its 
receive buffer. 

Traversal of the receive buffers by the receiving PE is 
implemented as fairly as possible, with the search begin- 
ning at the first buffer beyond where the last message was 
received. Upon discovering a new message, the receiving 
PEprocesses the message, clears the receive buffer flag, and 
then informs the sending PE that its receive buffer is free by 
clearing the send flag at the sending PE. 

buffer on 0 buffer on 1 0 local rank of the sender within the communicator 

Pmcess 1 
0 messagetag 

0 message length 

status flag indicating the buffer is in use 

buffer on 0 buffer on 1 1 

The data is written to the receiver before the header is 
written, insuring that the data will bevalid when the receiver 
recognizes that the buffer contains a new message. If the 
data is not four-byte aligned, it is copied to the sender's 
own locally aligned receive buffer before it is written to the 
receiver. The only use for the sender's own local receive 
buffer is as a copy space. 

Upon discovering any new message, the receiver 
searches its posted receive queue against the context id, lo- 
cal rank, and tag values for a match. If the search is suc- 
cessful, the data is copied from the receive buffer into the 
application's designated buffer. Both sending and receiving 
of this message is complete. If the search is unsuccessful, 
space for the data is allocated and the data is copied from 
the receive buffer into the newly allocated buffer. This mes- 
sage is then added to an unexpected message queue. Only 
the sending side of this message is complete. 

The receiver then clears the status flag in this receive 
buffer and informs the sender that its receive buffer is now 
free by writing a cleared status value into its designated send 
flag at the sender. 

For messages using the long protocol (Figure 3). only a 
header is sent. The message header for the long protocol is 
identical to the short message header, plus the the following 
additional information: 

Sender Receiver 

0 local address of a structure where the receiver can 
write (using a put) the following information: 

Header - - - -  P 
Data + - location of the receive buffer 

COPY 
- location of the receiver's completed flag 
- length of the receive buffer 

The sender initializes the buffer length field to a negative 
value, and writes only this header to the receiver. Upon dis- 
covering this new message, the receiver again searches the 
posted receive queue for a match, allocating a buffer if un- 
successful (an unexpected message). For the long protocol, 
a structure containing the address of the buffer, the length Figure 2. Short Send Protocol. 
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Sender Receiver Senidttr Receiver 

Header - - - -  :c 
Data 

Complete ------@ 

Long Send - - 3= 
Info 

Figure 3. Long Send Protocol. 

of the buffer, and the address of the receiver’s request oom- 
pleted flag is filled in and written back to the sender at the 
location specified in the message headex. 

Once this header has been processed by the receiver, the 
reciever clears the status flags of the receiver buffer and send 
flag, just as in the short protocol. 

At the sender, a non-negative receive buffer length s ig  
nals that the receiver has processed the message header anal 
the user data may be written to the receiver at the specified1 
location. After the user data is written, the sender writes aL 
completed flag value to the receiver’s completed flag loca- 
tion, informing the receiver that the data has been written 
If this message was expected at the receiver, both sending: 
and receiving of this message is complleted. If it was unex. 
pected, only the send operation is complete, and the mes- 
sage is added to the queue of unexpeckd messages at the: 
receiver. 

For synchronous send operations, both the short and long, 
message headers contain the following additional inform 
tion: 

e local address of the send tmmpleted flag where the re- 
ceiver can write a completed flag 

For both long and short protocol messages, when the re- 
ceiver recognizes the completion of a z;ynchronous receive. 
operation, a completed flag is written to the location at the 
sender specified in the message header (Figure 4 aud Fig- 
ure 5) .  Completion of a synchronous send operation is not 
complete at the sender or the rexeiver until the receiver up- 
dates the send completed flag. 

When a receive is posted, the unexpected message queue. 
is searched. If the search is successful, an unexpected mes- 
sage handle is associated with the posted receive handle, 

Header - - - -  * 
Data + 
Complete ---* 
COPY 

Figure 4. Short Synchronous Send Protocol. 

Sender Receiver 

-... - .. --- --. - -  -. ---  -. - .. - ., 

Header - - - -  * 
Data + 
Complete -------* 
Long Send - - * 

Info 

Figure 5. Long Synchronous Send Protocol. 

Once the unexpected message is completed, the data is 
copied from the allocated buffer to the application speci- 
fied buffer. If the search is unsuccessful, the receive han- 
dle is added tci a queue of posted receives. This queue is 
searched every time a new message is discovered in the re- 
ceive buffers. 

This send protocol prohibits taking advantage of any op- 
portunities for optimization provided by the MPI ready send 
functions. Therefore, readly sends are equivalent to blocking 
sends. 

3.2. Cache coherency 

Because remote memory updates take place without the 
involvement of the remote processor, the cache on the re- 
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mote PE can become invalid. The SHMEM library provides 
several functions used to help ensure cache coherency. Our 
initial implementation chose the simplest of these meth- 
ods. Automatic cache invalidation for all writes into lo- 
cal memory by other PE’s can be enabled by a call to 
shmemset-xacheinv(). This method was chosen rather 
than invalidating individual cache lines or flushing the en- 
tire data cache whenever a receive is posted. 

3.3. Address Validation 

Extreme caution must be taken when using shmemputtj 
to write into a non-global address on a remote PE. Global 
variables, static variables and memory allocated from the 
global shared heap using shmalloc() are guaranteed to be 
identical and valid on every PE. However, automatic vari- 
ables allocated from the local stack and dynamic memory 
allocated from the local heap are not guaranteed to be valid 
on every process. The shmemputf) function checks the va- 
lidity of both the source and target addresses in the local 
process’ address space. Should the target address not be 
a valid address in the sender’s address space, an operand 
range error is generated, and, if not caught, results in the 
application dumping a corefile. In order to write to any ad- 
dress on another PE, the target address must be made valid 
at the sender. 

Cray Research (CRI) pointed out an undocumented func- 
tion, mallocbrk(), which exists for validating memory d o -  
Gated from the local heap using malloc(). mallocbrk() es- 
sentially works like the brk() system call, exapanding the 
heap as necessary to make the target heap address valid. 
However, unlike brk(), the extra memory is added to the 
mafloc() free list for use by the application. CRI also con- 
tributed an assembly routine, .dimemstack(), for validating 
memory allocated from the local stack. shmemstack() ex- 
tends the local stack if the target address is beyond the top 
of the local stack. 

There are only a few places in the implementation where 
the target address must be checked for validity and be made 
valid. In the long protocol, the receiver must validate the ad- 
dress at the sender where the structure containing the loca- 
tion of the receive buffer, the location of the receiver’s com- 
pleted flag, and the length of the receive buffer are written. 
Likewise, the sender must then validate this receive buffer 
location before the user data can be written and also the re- 
ceive completed location before the receive completed flag 
can be written. Similarly, in the synchronous protocol, the 
receiver must validate the location of the send completed 
flag at the sender before the flag can be updated. All other 
puts are done to memory allocated from the shared heap. 

Checking for an invalid address is done by comparing the 
target address with both the top of the stack and also with 
the current break value obtained from sbrk(). Since there 

was no accurate means by which to get the value of the top 
of the stack, a simple assembly routine returning the stack 
pointer was written. Should the target address be less than 
the top of the stack or greater than the current heap break 
value, the target’s distance from each of those two limits is 
calculated. If the target is closest to the top of the stack, 
the stack is expanded, and if the target is closest to the heap 
break value, the heap is extended. The costs associated with 
checking the validity of a target address and extending the 
stack are nominal, but extending the heap involves making 
system calls to mallocbrk() and sbrk(). 

3.4. Alignment 

Because shmemput() can only transfer data that is four- 
byte aligned, temporary buffers are allocated for transfers 
involving addresses which are either not four-byte aligned 
or which are not a multiple of four in length. A tempo- 
rary send buffer is allocated for a long protocol send that 
originates from an address that is not four-byte aligned. A 
temporary receive buffer is also allocated in the long pro- 
tocol for a receive that is destined for a buffer which is 
not four-byte aligned or whose length is not a multiple of 
four. Consequently, sending and receiving to and from mis-  
alinged buffers has a substantial performance degradation 
that could be improved by a more optimal implementation. 
However, since character data is the only type which is 
not four-byte aligned, and due to the associated additional 
code complexity, efforts toward optimization of misaligned 
buffer use were considered to be of low priority. 

4. Performance 

Performance tests were run using the mpptest program 
contained in the MPICH distribution. The tests were run 
with the default parameters, using only the ‘-size’ switch 
to modlfy the start, end, and increment message sizes. 
The tests compare the current MPICH implementation with 
Cray ResearchlEndiburgh Parallel Computing Centre im- 
plementation version 1.4a. All tests were run on two pro- 
cessors. 

Figure 6 compares the latency for message lengths from 
zero to 1024 in increments of 32 bytes. While the MPICH 
numbers are erratic, the performance is comparable to that 
of the CRI/EFCC. 

Figure 7 compares the bandwidth for message lengths 
from 10k to 200k in increments of 1Ok. Bandwidth of the 
C R I B C C  version levels off to around 29 megabytes per 
second starting at messages of 100k. However, the MPICH 
bandwidth continues to increase, leveling off to approxi- 
mately 100 megabytes per second at messages of 1OOk. Fig- 
ure 8 shows the continuation for message sizes from one 
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Figure 6. Small Message Latency. Figure 8. Large Message Bandwidth. 

to five megabytes in the length. The kIPICH implementa- 
tion levels off at around 107 megabytes per second, achiev- 
ing approximately 85% of the available peak bandwidth, 
while the CRVEPCC version continues to hover around. 30 
megabytes per second. 

e 
B 

10 50 1 WO 150 200 
Message 6118 in Kilabylss 

_I 

Figure 7. Medium Message IBandwidth. 

5. Stages of Implementation 

The original device for the T3D was built from an exist- 
ing device constructed for the Myrinet <gigabit network [ll. 
Even though a device for shared memory communications 
existed in the MPICH distribution, the code was judged to 
be too complex to either integrate a strictly put-based shared 
memory implementation into or to use as a starting point for 
such a device. The complexity of the code for the device for 
Myrinet was much less, and the learning curve associated 
with implementing a T3D device from the Myrinet device 
was judged to be much lower. Only the basic framework of 
the device was retained and all code mid device dependlent 
structures were eliminated. 

As a result, implementhg the first T3D device required 
only approximately one month. However, because the de- 
vice for Myrind was packet-based and was not designed 
for shared-memory-type operations, the T3D device had to 
be shaped into one which was. Subsequent improvements 
made over the course of four months worked to optimize 
the devilce for a distributed shared memory environment. 

The initial device was crude and did not properly han- 
dle message buffers that were not eight-byte aligned. An 
initial improvement involved replacing shmemputo with 
shmempt32(), the SHMEM function for transferring four- 
byte alignted quantities. However, buffers that were not 
four-byte aligned or a multiple of four in length were still 
not properly managed. 

Further implrovements to the device fixed bugs associ- 
ated with the llong send protocol. In the initial implemen- 
tation of (he long send protocol, both blocking and non- 
blocking sends were handled identically. After sending a 
long message lieader to die receiver, the sender would en- 
ter a busy wait loop in the device layer waiting for the re- 
ceiver to respond. This method did not take advantage of 
the opportunities for increased performance offered by non- 
blocking send operations. The implementation was mod- 
ified so that the long send protocol would simply write a 
long senid header to the receiver when the send was posted 
and would try to complefe the send at some later point in 
time. This implemenation caused protocol failures for cer- 
tain combinations of wait and test operations. The current 
device c:ointains a queue of incomplete long send request 
handles. When testing or waiting on a receive request han- 
dle, the long send requad must be traversed so that long 
sends mak.e progress [21. 

The biggest problem with the MPICH T3D device was 
its propensity for spurious message loss. This because of 
a misunderstanding of how shmemput() messages were re- 
ceived. In the first implementation stages, the status flag 
that notified the receiver of a new message was the first field 
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in the message header structure. Even though the header 
was written in one ‘message’, the status field could be in 
a different cache line than the rest of the header informa- 
tion. A receiver that was traversing its receive buffers look- 
ing for status flags to be set could possibly recognize a set 
status flag and copy the other header information before it 
was valid or even written to memory. As such, the message 
would be received, but it most likely would contain incor- 
rect values in the context or tag fields and end up in the 
unexpected message queue. This problem was solved by 
moving the status flag so that it is the last value written into 
the receive buffer, insuring that all other header information 
is valid when a set status flag is discovered. 
CRI introduced a bug by changing the implementation of 

mallocbrk() so that the shmemstacko routine was extend- 
ing the stack to an illegal value. The symptoms of this prob- 
lem were recognized without the help of CRI. Test codes ex- 
hibited operand range errors upon entering functions subse- 
quent to a call to shmemstackf) to validate a target address. 
This problem was fixed by saving the stack pointer before 
the shmemstack() call and resetting the stack pointer afer 
the shmemput() call. An assembly routing was written to 
reset the value of the stack pointer. The cause of this prob- 
lem was only surmised, and while this seemed to be the 
only solution, recent information from CRI confirmed our 
suspicions and the validity of the solution. 

6. Future Work 

There are many performance improvements and en- 
hancements that need to be investigated for this device. The 
m e n t  implementation only transfers contiguous blocks 
of data, packing and unpacking non-contiguous datatypes 

e d d  Use of strided puts with the shmemaput() 
for indexed data types, or even multiple puts for 

vector datatypes needs to be studied. 
The design of the send 5ags and receive buffers provides 

the ability to do accomplish control so that buffering unex- 
pected messages may be turned on or off or even coni?gured 
to use only a set amount of memory. This desirable feature 
has not currently been utilized as a means of reducing the 
amount of required buffer space. 

The collective operations are the default MPICH col- 
lective operations which are built on top of MPI point-to- 
point communications. While these have shown good per- 
formance on the T3D, building MPI collective communica- 
tions on top of the SHMEM collective operations needs to 
be investigated promptly. 

Work is ongoing on the next generation AD1 [lo]. The 
goal of this new AD1 is to eliminate as much overhead as 
possible and achieve lower latencies than the first genera- 
tion AD1 for common cases, such as sending and receiving 
contiguous datatypes. Additionally, the new AD1 should 

maintain ease of implementation and retain opportunities to 
take advantage of the advanced capabilities of the underly- 
ing hardware. 

The MPICH T3D device can and should also be used 
as a basis for a port to the T3D’s successor, the T3E 141. 
The shared memory library on the T3E has elminated much 
of the complexity of the T3D device by augmenting func- 
tionality. T3E systems have automatic cache coherency, so 
the device need not explicitly invalidate the cache on re- 
mote memory writes. The T3E also does not attempt to val- 
idate remote addresses on the local PE, correcting the T3D 
flaw. The checkmg and validating of remote addresses us- 
ing shmemstacko and mallocbrk() will not be required. A 
major difference between the T3D and T3E will be the abil- 
ity to have out-of-order puts because of adaptive 3D routing. 
Currently, the T3D ensures that successive puts to the same 
PE will arrive in the order sent. On the T3E, this may not 
be assumed. A library function, shmemfenceO, must be 
called between successive puts to insure that the puts will 
occur in the order issued. This adaptive routing feature can 
possibly be exploited for collective as well as point-to-point 
communications. 
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